Site-directed spin labeling electron paramagnetic resonance (SDSL-EPR) using nitroxide spin labels is a well-established technology for mapping site-specific secondary and tertiary structure and for monitoring conformational changes in proteins of any degree of complexity, including membrane proteins, with high sensitivity. SDSL-EPR also provides information on protein dynamics in the timescale of ps-μs using continuous wave lineshape analysis and spin lattice relaxation time methods. However, the functionally important time domain of μs-ms, corresponding to large-scale protein motions, is inaccessible to those methods.
View Article and Find Full Text PDFBackground: The adjuvanted respiratory syncytial virus (RSV) prefusion F protein-based vaccine (RSVPreF3 OA) is approved in adults aged ≥60 years. We evaluated RSVPreF3 OA immunogenicity and safety in adults aged 50-59 years without or with increased risk for RSV disease due to specific chronic medical conditions.
Methods: This observer-blind, phase 3, noninferiority trial included adults aged 50-59 years, stratified into 2 subcohorts: those with and those without predefined, stable, chronic medical conditions leading to an increased risk for RSV disease.
Site-directed spin labeling electron paramagnetic resonance (SDSL-EPR) using nitroxide spin labels is a well-established technology for mapping site-specific secondary and tertiary structure and for monitoring conformational changes in proteins of any degree of complexity, including membrane proteins, with high sensitivity. SDSL-EPR also provides information on protein dynamics in the time scale of ps-µs using continuous wave lineshape analysis and spin lattice relaxation time methods. However, the functionally important time domain of µs-ms, corresponding to large-scale protein motions, is inaccessible to those methods.
View Article and Find Full Text PDF2,5-Diketopiperazines are cyclic dipeptides displaying a wide range of applications. Their enantioselective preparation has now been found possible from the respective racemates by a photochemical deracemization (53 examples, 74 % to quantitative yield, 71-99 % ee). A chiral benzophenone catalyst in concert with irradiation at λ=366 nm enables to establish the configuration at the stereogenic carbon atom C6 at will.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2023
Upon irradiation in the presence of a suitable chiral catalyst, racemic compound mixtures can be converted into enantiomerically pure compounds with the same constitution. The process is called photochemical deracemization and involves the formation of short-lived intermediates. By opening different reaction channels for the forward reaction to the intermediate and for the re-constitution of the chiral molecule, the entropically disfavored process becomes feasible.
View Article and Find Full Text PDF