Here, three types of surface coatings based on adsorption of organic aromatic acids or their Li salts are applied as functional coating substrates to engineer the surface properties of high voltage LiNi Mn O (LNMO) spinel cathodes. The materials used as coating include 1,3,5-benzene-tricarboxylic acid (trimesic acid [TMA]), its Li-salt, and 1,4-benzene-dicarboxylic acid (terephthalic acid). The surface coating involves simple ethanol liquid-phase mixing and low-temperature heat treatment under nitrogen flow.
View Article and Find Full Text PDFNi-rich layered oxide LiNiCoMnO (1 - - > 0.5) materials are favorable cathode materials in advanced Li-ion batteries for electromobility applications because of their high initial discharge capacity. However, they suffer from poor cycling stability because of the formation of cracks in their particles during operation.
View Article and Find Full Text PDFLi and Mn-rich Li1+xNiyCozMnwO2 (LMR-NMC, 0 < x < 0.2; w > 0.5) materials remain commercially relevant owing to their high specific capacity.
View Article and Find Full Text PDFDisordered carbons are promising anode materials for sodium ion batteries. However, a major drawback of these materials is their low coulombic efficiency in the first cycles, which indicates parasitic reactions. Such reactions can be suppressed by alumina coating on the surface of the anodic materials; more ions are then available for electrochemical activity, and less electrolyte solution is lost.
View Article and Find Full Text PDF