Quantum communication test beds provide a useful resource for experimentally investigating a variety of communication protocols. Here we demonstrate a superconducting circuit test bed with bidirectional multiphoton state transfer capability using time-domain shaped wave packets. The system we use to achieve this comprises two remote nodes, each including a tunable superconducting transmon qubit and a tunable microwave-frequency resonator, linked by a 2 m-long superconducting coplanar waveguide, which serves as a transmission line.
View Article and Find Full Text PDFLinear optical quantum computing provides a desirable approach to quantum computing, with only a short list of required computational elements. The similarity between photons and phonons points to the interesting potential for linear mechanical quantum computing using phonons in place of photons. Although single-phonon sources and detectors have been demonstrated, a phononic beam splitter element remains an outstanding requirement.
View Article and Find Full Text PDFHigh-fidelity quantum entanglement is a key resource for quantum communication and distributed quantum computing, enabling quantum state teleportation, dense coding, and quantum encryption. Any sources of decoherence in the communication channel, however, degrade entanglement fidelity, thereby increasing the error rates of entangled state protocols. Entanglement purification provides a method to alleviate these nonidealities by distilling impure states into higher-fidelity entangled states.
View Article and Find Full Text PDFThe generation of high-fidelity distributed multi-qubit entanglement is a challenging task for large-scale quantum communication and computational networks. The deterministic entanglement of two remote qubits has recently been demonstrated with both photons and phonons. However, the deterministic generation and transmission of multi-qubit entanglement has not been demonstrated, primarily owing to limited state-transfer fidelities.
View Article and Find Full Text PDFEffective quantum communication between remote quantum nodes requires high fidelity quantum state transfer and remote entanglement generation. Recent experiments have demonstrated that microwave photons, as well as phonons, can be used to couple superconducting qubits, with a fidelity limited primarily by loss in the communication channel [P. Kurpiers et al.
View Article and Find Full Text PDF