Recently, great progress has been made in the field of ultrasensitive microwave detectors, reaching even the threshold for utilization in circuit quantum electrodynamics. However, cryogenic sensors lack the compatibility with broad-band metrologically traceable power absorption measurements at ultralow powers, which restricts their range of applications. Here, we demonstrate such measurements using an ultralow-noise nanobolometer, which we extend by an additional direct-current (dc) heater input.
View Article and Find Full Text PDFRadiation sensors based on the heating effect of absorbed radiation are typically simple to operate and flexible in terms of input frequency, so they are widely used in gas detection, security, terahertz imaging, astrophysical observations and medical applications. Several important applications are currently emerging from quantum technology and especially from electrical circuits that behave quantum mechanically, that is, circuit quantum electrodynamics. This field has given rise to single-photon microwave detectors and a quantum computer that is superior to classical supercomputers for certain tasks.
View Article and Find Full Text PDFWe have used focused ion beam irradiation to progressively cause defects in annealed molybdenum silicide thin films. Without the treatment, the films are superconducting with critical temperature of about 1 K. We observe that both resistivity and critical temperature increase as the ion dose is increased.
View Article and Find Full Text PDFSuperconducting microwave circuits show great potential for practical quantum technological applications such as quantum information processing. However, fast and on-demand initialization of the quantum degrees of freedom in these devices remains a challenge. Here, we experimentally implement a tunable heat sink that is potentially suitable for the initialization of superconducting qubits.
View Article and Find Full Text PDFWe experimentally study nanoscale normal-metal-insulator-superconductor junctions coupled to a superconducting microwave resonator. We observe that bias-voltage-controllable single-electron tunneling through the junctions gives rise to a direct conversion between the electrostatic energy and that of microwave photons. The measured power spectral density of the microwave radiation emitted by the resonator exceeds at high bias voltages that of an equivalent single-mode radiation source at 2.
View Article and Find Full Text PDF