The fibronectin (FN) isoform including the extradomain B (EDB) segment (EDB + FN) is a promising tumor target and is highly expressed in some tumor types, such as breast, head, and neck cancer. To date, mostly immunohistochemistry (IHC) and Western blot have been used for the analysis of EDB + FN. However, complete quantitative measurements of EDB + FN expression in a tumor and circulation are important for the development of anti-EDB therapeutics.
View Article and Find Full Text PDFThough uncommon in melanoma, gene fusions may have therapeutic implications. Next generation sequencing-based clinical assays, designed to detect relevant gene fusions, mutations, and copy number changes, were performed on 750 melanomas (375 primary and 375 metastases) at our institution from 2014-2021. These included 599 (80%) cutaneous, 38 (5%) acral, 11 (1.
View Article and Find Full Text PDFExtra domain B splice variant of fibronectin (EDB+FN) is an extracellular matrix protein (ECM) deposited by tumor-associated fibroblasts, and is associated with tumor growth, angiogenesis, and invasion. We hypothesized that EDB+FN is a safe and abundant target for therapeutic intervention with an antibody-drug conjugate (ADC). We describe the generation, pharmacology, mechanism of action, and safety profile of an ADC specific for EDB+FN (EDB-ADC).
View Article and Find Full Text PDFPurpose: A sensitive and specific imaging biomarker to monitor immune activation and quantify pharmacodynamic responses would be useful for development of immunomodulating anti-cancer agents. PF-07062119 is a T cell engaging bispecific antibody that binds to CD3 and guanylyl cyclase C, a protein that is over-expressed by colorectal cancers. Here, we used Zr-Df-IAB22M2C (Zr-Df-Crefmirlimab), a human CD8-specific minibody to monitor CD8+ T cell infiltration into tumors by positron emission tomography.
View Article and Find Full Text PDFAberrant NOTCH3 signaling and overexpression is oncogenic, associated with cancer stem cells and drug resistance, yet therapeutic targeting remains elusive. Here, we develop NOTCH3-targeted antibody drug conjugates (NOTCH3-ADCs) by bioconjugation of an auristatin microtubule inhibitor through a protease cleavable linker to two antibodies with differential abilities to inhibit signaling. The signaling inhibitory antibody rapidly induces ligand-independent receptor clustering and internalization through both caveolin and clathrin-mediated pathways.
View Article and Find Full Text PDF