Contamination of aquatic ecosystems by potentially toxic elements (PTEs) is a concerning environmental issue, given their persistence, toxicity potential, and ability to accumulate in living organisms. Several studies have been conducted to assess the contamination of aquatic ecosystems by PTEs, using pollution and ecological risk indices that rely on the concentration of these elements in aquatic sediments. However, many of these studies use global reference values for calculating the indices, which can lead to misleading interpretations due to substantial variations in PTEs concentrations influenced by the geological characteristics of each region.
View Article and Find Full Text PDFMetallurgical applications of deep eutectic solvents (DESs), known as ionometallurgy, have received significant research attention in recent years. While many studies claim that DESs are generally green and enhance process efficiency, others believe that industrial applications of ionometallurgy are generally not viable. Here, we report on leaching experiments of a sulfide flotation concentrate using ethaline, a chloride-based DES, in the presence of common oxidants.
View Article and Find Full Text PDFIntroduction: Delays in diagnosis and initiation of treatment have a negative impact on the prognosis and survival of head and neck cancer (HNC) patients. These delays also involve more intensive treatments with greater toxicity, dysfunction, and morbidity.
Methods: This was a retrospective observational study with patients diagnosed with HNC between January 1, 2018, and December 31, 2021.
Many of the health-associated impacts of the microbiome are mediated by its chemical activity, producing and modifying small molecules (metabolites). Thus, microbiome metabolite quantification has a central role in efforts to elucidate and measure microbiome function. In this review, we cover general considerations when designing experiments to quantify microbiome metabolites, including sample preparation, data acquisition and data processing, since these are critical to downstream data quality.
View Article and Find Full Text PDFBackground: Liquid biopsy (LB) is a non-invasive tool to evaluate the heterogeneity of tumors. Since RAS mutations (RAS-mut) play a major role in resistance to antiepidermal growth factor receptor inhibitors (EGFR) monoclonal antibodies (Mabs), serial monitoring of RAS-mut with LB may be useful to guide treatment. The main aim of this study was to evaluate the prognostic value of the loss of RAS-mut (NeoRAS-wt) in LB, during the treatment of metastatic colorectal cancer (mCRC).
View Article and Find Full Text PDF