Publications by authors named "J Glowacka"

To explore the tailoring of hydrophobicity in 3D-printed polylactide (PLA) composites for advanced applications using additive manufacturing (AM), this study focuses on the use of Fused Deposition Modeling (FDM) 3D printing. PLA, a material derived from renewable sources, is favored for its eco-friendliness and user accessibility. Nonetheless, PLA's inherent hydrophilic properties result in moisture absorption, negatively affecting its performance.

View Article and Find Full Text PDF

Current research on materials engineering focuses mainly on bio-based materials. One of the most frequently studied materials in this group is polylactide (PLA), which is a polymer derived from starch. PLA does not have a negative impact on the natural environment and additionally, it possesses properties comparable to those of industrial polymers.

View Article and Find Full Text PDF

This article presents the development of an automated three-point bending testing system using a robot to increase the efficiency and precision of measurements for PLA/TPU polymer blends as implementation high-throughput measurement methods. The system operates continuously and characterizes the flexural properties of PLA/TPU blends with varying TPU concentrations. This study aimed to determine the effect of TPU concentration on the strength and flexural stiffness, surface properties (WCA), thermal properties (TGA, DSC), and microscopic characterization of the studied blends.

View Article and Find Full Text PDF

In this work, the possibility of managing the rheological and mechanical parameters of composites based on PLA with the use of cubic structures of organofunctional spherosilicates was verified. To accurately observe the effect of various organosilicon modifier substitutions on changes in composites' properties, we synthesized and used monofunctional octasubstituted derivatives as reference systems. The OSS/PLA systems were tested with concentrations of 0.

View Article and Find Full Text PDF

In this study, composites containing polylactide and carbonate lake sediment in concentrations of 2.5, 5, 10, and 15% by weight were prepared by a 3D printing method. The material for 3D printing was obtained by directly diluting the masterbatch on an injection moulder to the desired concentrations, and after granulation, it was extruded into a filament.

View Article and Find Full Text PDF