The ubiquitous presence of fragmented plastic particles needs comprehensive understanding of its fate in the environment. The long-term persistence of microplastics (MPs) in the environment is a significant threat to the ecosystem. Even though various degradation mechanisms (physical, chemical, and biological) of commonly used plastics have been demonstrated, quantifying the degradation of MPs over time to predict the consequence of plastic littering and its persistence in the environment remains a challenge.
View Article and Find Full Text PDFUnderstanding anaerobic biodegradation of ether oxygenates beyond MTBE in groundwater is important, given that it is replaced by ETBE as a gasoline additive in several regions. The lack of studies demonstrating anaerobic biodegradation of ETBE, and its product TBA, reflects the relative resistance of ethers and alcohols with a tertiary carbon atom to enzymatic attack under anoxic conditions. Anaerobic ETBE- or TBA-degrading microorganisms have not been characterized.
View Article and Find Full Text PDFOcean plastic pollution is a severe environmental problem but most of the plastic that has been released to the ocean since the 1950s is unaccounted for. Although fungal degradation of marine plastics has been suggested as a potential sink mechanism, unambiguous proof of plastic degradation by marine fungi, or other microbes, is scarce. Here we applied stable isotope tracing assays with C-labeled polyethylene to measure biodegradation rates and to trace the incorporation of plastic-derived carbon into individual cells of the yeast Rhodotorula mucilaginosa, which we isolated from the marine environment.
View Article and Find Full Text PDFMitigation measures are needed to prevent large loads of phosphate originating in agriculture from reaching surface waters. Iron-coated sand (ICS) is a residual product from drinking water production. It has a high phosphate adsorption capacity and can be placed around tile drains, taking no extra space, which increases the farmers' acceptance.
View Article and Find Full Text PDFBiodegradation of pollutants is a sustainable and cost-effective solution to groundwater pollution. Here, we investigate microbial populations involved in biodegradation of poly-contaminants in a pipeline for heavily contaminated groundwater. Groundwater moves from a polluted park to a treatment plant, where an aerated bioreactor effectively removes the contaminants.
View Article and Find Full Text PDF