Publications by authors named "J Geno Samaritoni"

New antibiotics are urgently needed to address increasing rates of multidrug resistant infections. Seventy-six diversely functionalized compounds, comprising five structural scaffolds, were synthesized and tested for their ability to inhibit microbial growth. Twenty-six compounds showed activity in the primary phenotypic screen at the Community for Open Antimicrobial Drug Discovery (CO-ADD).

View Article and Find Full Text PDF

The Distributed Drug Discovery (D3) program develops simple, powerful, and reproducible procedures to enable the distributed synthesis of large numbers of potential drugs for neglected diseases. The synthetic protocols are solid-phase based and inspired by published work. One promising article reported that many biomimetic molecules based on diverse scaffolds with three or more sites of variable substitution can be synthesized in one or two steps from a common key aldehyde intermediate.

View Article and Find Full Text PDF

Background: Optimization studies on a high-throughput screening (HTS) hit led to the discovery of a series of N-(6-arylpyridazin-3-yl)amides with insecticidal activity. It was hypothesized that the isosteric replacement of the pyridazine ring with a 1,3,4-thiadiazole ring could lead to more potent biological activity and/or a broader sap-feeding pest spectrum. The resulting N-(5-aryl-1,3,4-thiadiazol-2-yl)amides were explored as a new class of insecticides.

View Article and Find Full Text PDF

Remote amide bonds in simple N-acyl amino acid amide or peptide derivatives 1 can be surprisingly unstable hydrolytically, affording, in solution, variable amounts of 3 under mild acidic conditions, such as trifluoroacetic acid/water mixtures at room temperature. This observation has important implications for the synthesis of this class of compounds, which includes N-terminal-acylated peptides. We describe the factors contributing to this instability and how to predict and control it.

View Article and Find Full Text PDF

Syntheses of various isomeric dihydropiperazines can be approached successfully by taking advantage of the regioselective monothionation of their respective diones. Preparation of the precursor unsymmetrical N-substituted piperazinediones from readily available diamines is key to this selectivity. The dihydropiperazine ring system, as exemplified in 1-[(6-chloropyridin-3-yl)methyl]-4-methyl-3-oxopiperazin-2-ylidenecyanamide (4) and 1-[(2-chloro-1,3-thiazol-5-yl)methyl]-4-methyl-3-oxopiperazin-2-ylidenecyanamide (25), has been shown to be a suitable bioisosteric replacement for the imidazolidine ring system contained in neonicotinoid compounds.

View Article and Find Full Text PDF