Publications by authors named "J Gansler"

Extracellular RNA (eRNA) released under injury or pathological conditions has been identified as a yet unrecognized vascular alarm signal to induce procoagulant, permeability-promoting, and proinflammatory activities. eRNA-induced functions were largely prevented by administration of RNase1 as a natural blood vessel-protective antagonist of eRNA. The aim of this study was to investigate the inflammatory regulation of endothelial cell RNase1, which is partly stored in Weibel-Palade bodies of these cells.

View Article and Find Full Text PDF

The tight electrostatic binding of the chemokine platelet factor 4 (PF4) to polyanions induces heparin-induced thrombocytopenia, a prothrombotic adverse drug reaction caused by immunoglobulin G directed against PF4/polyanion complexes. This study demonstrates that nucleic acids, including aptamers, also bind to PF4 and enhance PF4 binding to platelets. Systematic assessment of RNA and DNA constructs, as well as 4 aptamers of different lengths and secondary structures, revealed that increasing length and double-stranded segments of nucleic acids augment complex formation with PF4, while single nucleotides or single-stranded polyA or polyC constructs do not.

View Article and Find Full Text PDF

Background: Warfarin directly inhibits the vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1) enzyme to effect anticoagulation. VKORC1 function has historically been assessed in vitro using a dithiothreitol (DTT)-driven vitamin K 2,3-epoxide reductase (VKOR) assay. Warfarin inhibits wild-type VKORC1 function by the DTT-VKOR assay.

View Article and Find Full Text PDF

Nucleic acids, especially extracellular RNA, are exposed following tissue- or vessel damage and have previously been shown to activate the intrinsic blood coagulation pathway in vitro and in vivo. Yet, no information on structural requirements for the procoagulant activity of nucleic acids is available. A comparison of linear and hairpin-forming RNA- and DNA-oligomers revealed that all tested oligomers forming a stable hairpin structure were protected from degradation in human plasma.

View Article and Find Full Text PDF

The functions of extracellular RNA in the vascular system as new procoagulatory and permeability-increasing factor in vivo and in vitro were shown to be counteracted by pancreatic type RNase1. Based on the identification of RNase1 in plasma and serum, it is proposed that the enzyme is expressed by vascular cells to contribute in the regulation of extracellular RNA. It is demonstrated that RNase1 and RNase5 (also termed angiogenin) were differentially expressed in various types of endothelial cells, whereby human umbilical vein endothelial cells (HUVEC) expressed and released the highest concentration of active RNase1.

View Article and Find Full Text PDF