CDK4/6 inhibitors are standard of care in the treatment of metastatic breast cancer. Treatment regimen consists of a combination with endocrine therapy, since their therapeutic efficacy as monotherapy in most clinical trials was rather limited. Thus, understanding the molecular mechanisms that underlie response to therapy might allow for the development of an improved therapy design.
View Article and Find Full Text PDFMetal-helix based metamaterials have been introduced as compact and broadband circular polarizers. However, the end of the metal wire together with the helix center defines an axis in space, which unavoidably breaks the rotational symmetry at the metamaterial surface. This introduces linear birefringence.
View Article and Find Full Text PDFWe have recently shown that metamaterials composed of three-dimensional gold helices periodically arranged on a square lattice can be used as compact "thin-film" circular polarizers with one octave bandwidth. The physics of the motif of these artificial crystals is closely related to that of microwave sub-wavelength helical antennas in end-fire geometry. Here, we systematically study the dependence of the metamaterial's chiral optical properties on helix pitch, helix radius, two-dimensional lattice constant, wire radius, number of helix pitches, and angle of incidence.
View Article and Find Full Text PDFWe investigated propagation of light through a uniaxial photonic metamaterial composed of three-dimensional gold helices arranged on a two-dimensional square lattice. These nanostructures are fabricated via an approach based on direct laser writing into a positive-tone photoresist followed by electrochemical deposition of gold. For propagation of light along the helix axis, the structure blocks the circular polarization with the same handedness as the helices, whereas it transmits the other, for a frequency range exceeding one octave.
View Article and Find Full Text PDFThe design, testing and operation of a system for telecentric 3-dimensional imaging of dynamic objects is presented. The simple system is capable of rapid electronic scanning of a single focal plane within a specimen or of simultaneous focusing on multiple planes whose depth and relative spacing within the specimen can be changed electronically. Application to studies of dynamic processes in microscopy is considered.
View Article and Find Full Text PDF