Transposable elements (TEs) are found in virtually every eukaryotic genome and are important for generating genetic variation. However, outside of costly and time-consuming whole-genome sequencing approaches, the set of available methods to study TE polymorphisms in non-model species is very limited. The Transposon Display (TD) is a simple yet effective technique to characterize polymorphisms across samples by identifying amplified fragment length polymorphisms using primers targeting specific TE families.
View Article and Find Full Text PDFEusocial Hymenoptera have the highest recombination rates among all multicellular animals studied so far, but it is unclear why this is and how this affects the biology of individual species. A high-resolution linkage map for the ant corroborates genome-wide high recombination rates reported for ants (8.1 cM/Mb).
View Article and Find Full Text PDFBackground: Social insects vary considerably in their social organization both between and within species. In the California harvester ant, Pogonomyrmex californicus (Buckley 1867), colonies are commonly founded and headed by a single queen (haplometrosis, primary monogyny). However, in some populations in California (USA), unrelated queens cooperate not only during founding (pleometrosis) but also throughout the life of the colony (primary polygyny).
View Article and Find Full Text PDFWhat are social niches, and how do they arise and change? Our first goal in the present article is to clarify the concept of an individualized social niche and to distinguish it from related concepts, such as a social environment and a social role. We argue that focal individuals are integral parts of individualized social niches and that social interactions with conspecifics are further core elements of social niches. Our second goal in the present article is to characterize three types of processes-social niche construction, conformance, and choice (social NC processes)-that explain how individualized social niches originate and change.
View Article and Find Full Text PDFAnimals must learn to ignore stimuli that are irrelevant to survival and attend to ones that enhance survival. When a stimulus regularly fails to be associated with an important consequence, subsequent excitatory learning about that stimulus can be delayed, which is a form of nonassociative conditioning called 'latent inhibition'. Honey bees show latent inhibition toward an odor they have experienced without association with food reinforcement.
View Article and Find Full Text PDF