Publications by authors named "J G Stuckey"

Dysregulation of translation is a hallmark of cancer that enables rapid changes in cellular protein production to shape oncogenic phenotypes. Translation initiation is governed by the mGpppX cap-binding protein eukaryotic translation initiation factor 4E (eIF4E), the rate-limiting factor of cap-dependent translation initiation. eIF4E is overexpressed in many cancers and drives the production of oncoproteins that promote tumor growth and survival.

View Article and Find Full Text PDF

SMARCA2 is an attractive synthetic lethal target in human cancers with mutated, inactivated SMARCA4. We report herein the discovery of highly potent and selective SMARCA2 PROTAC degraders, as exemplified by SMD-3236, which was designed using a new, high-affinity SMARCA ligand and a potent VHL-1 ligand. SMD-3236 achieves DC < 1 nM and > 95% against SMARCA2 and >2000-fold degradation selectivity over SMARCA4.

View Article and Find Full Text PDF

In the SWI/SNF chromatin-remodeling complex, the mutually exclusive catalytic ATPase subunits SMARCA2 and SMARCA4 proteins have a synthetic-lethal relationship. Selectively targeting SMARCA2 for degradation is a promising and new therapeutic strategy for human cancers harboring inactivated mutated SMARCA4. In this study, we report the design, synthesis, and biological evaluation of novel SMARCA2/4 ligands and our subsequent design of PROTAC degraders using high-affinity SMARCA ligands and VHL-1 ligands.

View Article and Find Full Text PDF
Article Synopsis
  • STAT3 is identified as a key target for treating cancer and other diseases, prompting research into effective inhibitors.
  • The team developed a new STAT3 degrader, SD-436, using a high-affinity ligand that demonstrates strong potency and selectivity.
  • In mouse models, SD-436 shows rapid and lasting depletion of STAT3, leading to significant tumor regression, positioning it as a potential new treatment option for cancers like leukemia and lymphoma.
View Article and Find Full Text PDF

An antibody-based HIV-1 vaccine will require the induction of potent cross-reactive HIV-1-neutralizing responses. To demonstrate feasibility toward this goal, we combined vaccination targeting the fusion-peptide site of vulnerability with infection by simian-human immunodeficiency virus (SHIV). In four macaques with vaccine-induced neutralizing responses, SHIV infection boosted plasma neutralization to 45%-77% breadth (geometric mean 50% inhibitory dilution [ID] ∼100) on a 208-strain panel.

View Article and Find Full Text PDF