Background: The increased use of chemicals leads to a continuous deposition of chemicals in the environment and to a continuous increase in exposure of the global and the European population. Comprehensive burden of disease analyses are however still missing for many countries.
Methods: Using the World Health Organization's Environmental Burden of Disease (EBD) approach and combining data from the European Human Biomonitoring (HBM) dashboard with disease and population data, we estimated the comprehensive attributable burden (AB) for the year 2021, in the best-case quantified by disability-adjusted life years (DALY).
Derivation of occupational biomonitoring levels (OBLs) is needed to effectively utilize biomonitoring for assessing exposures to chemical substances, and consequently, implement risk reduction measures to reduce health risks among workers. OBLs are the appropriate option for chemical substances that can be absorbed through the skin. This methodology for derivation of OBLs has been developed in collaboration with scientific and regulatory experts from more than 40 institutes in 15 countries within the Organization for Economic Cooperation and Development (OECD) framework.
View Article and Find Full Text PDFHuman biomonitoring (HBM) data indicate that exposure to pyrethroids is widespread in Europe, with significantly higher exposure observed in children compared to adults. Epidemiological, toxicological, and mechanistic studies raise concerns for potential human health effects, particularly, behavioral effects such as attention deficit hyperactivity disorder (ADHD) in children at low levels of exposure. Based on an exposure-response function from a single European study and on available quality-assured and harmonized HBM data collected in France, Germany, Iceland, Switzerland, and Israel, a preliminary estimate of the environmental burden of disease for ADHD associated with pyrethroid exposure was made for individuals aged 0-19 years.
View Article and Find Full Text PDFBiomonitoring has been widely used in assessing exposures in both occupational and public health complementing chemical risk assessments because it measures the concentrations of chemical substances in human body fluids (e.g., urine and blood).
View Article and Find Full Text PDFBlood microsampling has increasingly attracted interest in the past decades as a more patient-centric sampling approach, offering the possibility to collect a minimal volume of blood following a finger or arm prick at home. In addition to conventional dried blood spots (DBS), many different devices allowing self-sampling of blood have become available. Obviously, the success of home-sampling can only be assured when (inexperienced) users collect samples of good quality.
View Article and Find Full Text PDF