Publications by authors named "J G Kalbfleisch"

The coronavirus disease 2019 (COVID-19) pandemic has exerted a profound impact on patients with end-stage renal disease relying on kidney dialysis to sustain their lives. A preliminary analysis of dialysis patient postdischarge hospital readmissions and deaths in 2020 revealed that the COVID-19 effect has varied significantly with postdischarge time and time since the pandemic onset. However, the complex dynamics cannot be characterized by existing varying coefficient models.

View Article and Find Full Text PDF

Herein, we report progress toward a metabotropic glutamate receptor subtype 1 (mGlu) positive allosteric modulator (PAM) clinical candidate and the discovery of VU6024578/BI02982816. From a weak high-throughput screening hit (VU0538160, EC > 10 μM, 71% Glu), optimization efforts improved functional potency over 185-fold to deliver the selective (inactive on mGlu) and CNS penetrant (rat K = 0.99, K = 0.

View Article and Find Full Text PDF

In this work we study the lifetime Medicare spending patterns of patients with end-stage renal disease (ESRD). We extract the information of patients who started their ESRD services in 2007-2011 from the United States Renal Data System (USRDS). Patients are partitioned into three groups based on their kidney transplant status: 1-unwaitlisted and never transplanted, 2-waitlisted but never transplanted, and 3-waitlisted and then transplanted.

View Article and Find Full Text PDF

We propose a nonparametric bivariate time-varying coefficient model for longitudinal measurements with the occurrence of a terminal event that is subject to right censoring. The time-varying coefficients capture the longitudinal trajectories of covariate effects along with both the followup time and the residual lifetime. The proposed model extends the parametric conditional approach given terminal event time in recent literature, and thus avoids potential model misspecification.

View Article and Find Full Text PDF

Here, we demonstrate a structure-based small molecule virtual screening and lead optimization pipeline using a homology model of a difficult-to-drug G-protein-coupled receptor (GPCR) target. Protease-activated receptor 4 (PAR4) is activated by thrombin cleavage, revealing a tethered ligand that activates the receptor, making PAR4 a challenging target. A virtual screen of a make-on-demand chemical library yielded a one-hit compound.

View Article and Find Full Text PDF