Publications by authors named "J G Guo"

The spin-exotic hybrid meson π_{1}(1600) is predicted to have a large decay rate to the ωππ final state. Using 76.6  pb^{-1} of data collected with the GlueX detector, we measure the cross sections for the reactions γp→ωπ^{+}π^{-}p, γp→ωπ^{0}π^{0}p, and γp→ωπ^{-}π^{0}Δ^{++} in the range E_{γ}=8-10  GeV.

View Article and Find Full Text PDF

Z boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong force, improve Monte Carlo event generators, and search for deviations from standard model predictions. All previous measurements of Z boson production characterize the event properties using a small number of observables and present the results as differential cross sections in predetermined bins.

View Article and Find Full Text PDF

Motivation: The accurate prediction of O-GlcNAcylation sites is crucial for understanding disease mechanisms and developing effective treatments. Previous machine learning models primarily relied on primary or secondary protein structural and related properties, which have limitations in capturing the spatial interactions of neighboring amino acids. This study introduces local environmental features as a novel approach that incorporates three-dimensional spatial information, significantly improving model performance by considering the spatial context around the target site.

View Article and Find Full Text PDF

Pressurized IrX (X = P and As) stands out as the sole -type superconductors among dozens of filled-skutterudites that are primarily characterized by -type charge carriers. The emergence of superconductivity is proposed to be intimately related to the inharmonic rattling phonons originating from the filled atoms. Here, we explore the impact of the size effect of the rattling atoms by substituting X with Sb, whose radius is 30 and 17% larger than those of P and As, respectively.

View Article and Find Full Text PDF

Acute renal injury (AKI) has a high incidence rate and mortality, but current treatment methods are limited. As a kind of nanomaterial with enzyme-like activity, nanozyme has shown outstanding advantages in treating AKI according to recent reports. Herein, we assess the potential of manganese-based nanozymes (MnO-BSA NPs) with excellent biosafety in effectively alleviating AKI.

View Article and Find Full Text PDF