Chimeric antigen receptor (CAR) T cells represent a novel targeted approach to overcome deficits in the ability of the host immune system to detect and subsequently eradicate tumors. The identification of antigens expressed specifically on the surface of tumor cells is a critical first step for a targeted therapy that selectively targets cancer cells without affecting normal tissues. 5T4 is a tumor-associated antigen expressed on the cell surface of most solid tumors.
View Article and Find Full Text PDFAnimal studies are needed that best simulate a large-scale, inhomogeneous body exposure after a radiological or nuclear incident and that provides a platform for future development of medical countermeasures. A partial-body irradiation (PBI) model using 137Cs gamma rays with hind limb (tibia) shielding was developed and assessed for the sequalae of radiation injuries to gastrointestinal tract, bone marrow (BM) and lung and among different genetic mouse strains (C57BL/6J, C57L/J, CBA/J and FVB/NJ). In this case, a marginal level of BM shielding (∼2%) provided adequate protection against lethality from infection and hemorrhage and enabled escalation of radiation doses with evaluation of both acute and delayed radiation syndromes.
View Article and Find Full Text PDFBackground: Genetically engineered mouse models (GEMMs) of cancer are powerful tools to study mechanisms of disease progression and therapy response, yet little is known about how these models respond to multimodality therapy used in patients. Radiation therapy (RT) is frequently used to treat localized cancers with curative intent, delay progression of oligometastases, and palliate symptoms of metastatic disease.
Methods: Here we report the development, testing, and validation of a platform to immobilize and target tumors in mice with stereotactic ablative RT (SART).
The objective of the current study was to establish a mouse model of acute radiation syndrome (ARS) after total-body irradiation with 2.5% bone marrow sparing (TBI/BM2.5) that progressed to the delayed effects of acute radiation exposure, specifically pneumonitis and/or pulmonary fibrosis (DEARE-lung), in animals surviving longer than 60 days.
View Article and Find Full Text PDF