Nanoparticle's success as drug delivery systems for cancer treatment has been achieved through passive targeting mechanisms. However, tumor heterogeneity and rapid drug clearance limit the treatment efficacy. Improved outcomes and selective drug release can be achieved by grafting ligands at the surface of nanocarriers that bind molecules overexpressed in the tumor microenvironment (TME).
View Article and Find Full Text PDFAlthough the involvement of protein kinase CK2 in cancer is well-documented, there is a need for selective CK2 inhibitors suitable for investigating CK2 specific roles in cancer-related biological pathways and further exploring its therapeutic potential. Here, we report the discovery of AB668, an outstanding selective inhibitor that binds CK2 through a bivalent mode, interacting both at the ATP site and an allosteric αD pocket unique to CK2. Using caspase activation assay, live-cell imaging, and transcriptomic analysis, we have compared the effects of this bivalent inhibitor to representative ATP-competitive inhibitors, CX-4945, and SGC-CK2-1.
View Article and Find Full Text PDFAmyloid-β oligomers (Aβo) are the most pathologically relevant Aβ species in Alzheimer's disease (AD), because they induce early synaptic dysfunction that leads to learning and memory impairments. In contrast, increasing VEGF (Vascular Endothelial Growth Factor) brain levels have been shown to improve learning and memory processes, and to alleviate Aβ-mediated synapse dysfunction. Here, we designed a new peptide, the blocking peptide (BP), which is derived from an Aβo-targeted domain of the VEGF protein, and investigated its effect on Aβ-associated toxicity.
View Article and Find Full Text PDFTargeted radionuclide therapy is a revolutionary tool for the treatment of highly spread metastatic cancers. Most current approaches rely on the use of vectors to deliver radionuclides to tumor cells, targeting membrane-bound cancer-specific moieties. Here, we report the embryonic navigation cue netrin-1 as an unanticipated target for vectorized radiotherapy.
View Article and Find Full Text PDFThe mitochondrial voltage-dependent anion channel 1 (VDAC1) plays a central role in metabolism and apoptosis, which makes it a promising therapeutic target. Nevertheless, molecular mechanisms governing VDAC1 functioning remain unclear. Small-molecule ligands specifically interacting with the channel provide an attractive way of exploring its structure-function relationships and can possibly be used as founding stones for future drug-candidates.
View Article and Find Full Text PDF