The electronic properties of crystals can be manipulated by superimposing spatially periodic electric, magnetic or structural modulations. Long-wavelength modulations incommensurate with the atomic lattice are particularly interesting, exemplified by recent advances in two-dimensional (2D) moiré materials. Bulk van der Waals (vdW) superlattices hosting 2D interfaces between minimally disordered layers represent scalable bulk analogues of artificial vdW heterostructures and present a complementary venue to explore incommensurately modulated 2D states.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2024
Frustrated rare-earth-based intermetallics provide a promising platform for emergent magnetotransport properties through exchange coupling between conduction electrons and localized rare-earth magnetic moments. Metamagnetism, the abrupt change of magnetization under an external magnetic field, is a signature of first-order magnetic phase transitions; recently, metamagnetic transitions in frustrated rare earth intermetallics have attracted interest for their accompanying nontrivial spin structures (e.g.
View Article and Find Full Text PDFCondensates are a hallmark of emergence in quantum materials such as superconductors and charge density waves. Excitonic insulators are an intriguing addition to this library, exhibiting spontaneous condensation of electron-hole pairs. However, condensate observables can be obscured through parasitic coupling to the lattice.
View Article and Find Full Text PDFElectronic flat-band materials host quantum states characterized by a quenched kinetic energy. These flat bands are often conducive to enhanced electron correlation effects and emergent quantum phases of matter. Long studied in theoretical models, these systems have received renewed interest after their experimental realization in van der Waals heterostructures and quasi-two-dimensional (2D) crystalline materials.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2023
The propagation of spin waves in magnetically ordered systems has emerged as a potential means to shuttle quantum information over large distances. Conventionally, the arrival time of a spin wavepacket at a distance, , is assumed to be determined by its group velocity, . Here, we report time-resolved optical measurements of wavepacket propagation in the Kagome ferromagnet FeSn that demonstrate the arrival of spin information at times significantly less than /.
View Article and Find Full Text PDF