During the transition from fresh waters to terrestrial habitats, significant adaptive changes occurred in kidney function of vertebrates to cope with varying osmotic challenges. We investigated the mechanisms driving water conservation in the mammalian nephron, focusing on the relative contributions of active ion transport and Starling forces. We constructed a thermodynamic model to estimate the entropy generation associated with different processes within the nephron, and analyzed their relative importance in urine formation.
View Article and Find Full Text PDFTorpor is used in small sized birds and mammals as an energy conservation trait. Considerable effort has been put towards elucidating the mechanisms underlying its entry and maintenance, but little attention has been paid regarding the exit. Firstly, we demonstrate that the arousal phase has a stereotyped dynamic: there is a sharp increase in metabolic rate followed by an increase in body temperature and, then, a damped oscillation in body temperature and metabolism.
View Article and Find Full Text PDFFor decades, there was an intense debate in relation to the mechanism behind the entry into metabolic depression (EMD) of mammals and birds. The fulcrum of the argument was whether the depression of metabolic rate ([Formula: see text]) was caused by the drop in body temperature, the so-called "Q effect", or whether it was caused by a metabolic downregulation. One present-day model of this process is a qualitative (textual) description: the initial step of EDM would be a downregulation in [Formula: see text] from the value maintaining euthermia at a given ambient temperature to the basal metabolic rate of the animal and, then, Q effect would take over and drop [Formula: see text] to its lower levels.
View Article and Find Full Text PDFInert gas bubbles in tissues and in blood have been historically considered as the only triggering factors for DCS, but now many other factors are considered to affect the final outcome of a decompression profile for a certain individual. In this sense, inflammation seems to play a relevant role, not only due to the physical damage of tissues by the bubbles, but as a potentiator of the process as a whole. The present study aims to put forward a mathematical model of bubble formation associated with an inflammatory process related to decompression.
View Article and Find Full Text PDFThe purpose of this study was to analyze the correlation between decompression-related physiological stress markers, given by inflammatory processes and immune system activation and changes in Heart Rate Variability, evaluating whether Heart Rate Variability can be used to estimate the physiological stress caused by the exposure to hyperbaric environments and subsequent decompression. A total of 28 volunteers participated in the experimental protocol. Electrocardiograms were performed; blood samples were obtained for the quantification of red cells, hemoglobin, hematocrit, neutrophils, lymphocytes, platelets, aspartate transaminase (AST), alanine aminotransferase (ALT), and for immunophenotyping and microparticles (MP) research through Flow Cytometry, before and after each experimental protocol from each volunteer.
View Article and Find Full Text PDF