Publications by authors named "J G Cabanas-Moreno"

Hydrogen storage in Mg/MgH materials is still an active research topic. In this work, a mixture of Mg-15wt.% VCl was produced by cryogenic ball milling and tested for hydrogen storage.

View Article and Find Full Text PDF

Many metallurgical processes produce characteristic dislocation accumulation, with heterogeneous spatial and orientation distributions and further development of microstructures after heat treatment. Recovery and recrystallisation behaviours are direct consequences of those uneven dislocation distributions. The Electron BackScatter Diffraction (EBSD) technique can be used for the characterisation of such microstructural features, including: Density of Geometrically Necessary Dislocations (GND), Kernel Average Misorientations (KAM), Grain Orientation Spread (GOS), Grain Average Misorientation (GAM), Grain Reference Orientation Deviation (GROD - Angle) and GOS/D, where D is an assumed characteristic grain length.

View Article and Find Full Text PDF

The demand for multifunctional requirements in aerospace, military, automobile, sports, and energy applications has encouraged the investigation of new composite materials. This study focuses on the development of multiwall carbon nanotube (MWCNT) filled polypropylene composites and carbon nanofiber composite mats. The developed systems were then used to prepare interlayered composites that exhibited improved electrical conductivity and electromagnetic interference (EMI) shielding efficiency.

View Article and Find Full Text PDF

Nanoparticles can reach the blood and cause inflammation, suggesting that nanoparticles-endothelial cells interactions may be pathogenically relevant. We evaluated the effect of titanium dioxide nanoparticles (TiO₂) on proliferation, death, and responses related with inflammatory processes such as monocytic adhesion and expression of adhesion molecules (E- and P-selectins, ICAM-1, VCAM-1, and PECAM-1) and with inflammatory molecules (tissue factor, angiotensin-II, VEGF, and oxidized LDL receptor-1) on human umbilical vein endothelial cells (HUVEC). We also evaluated the production of reactive oxygen species, nitric oxide production, and NF-κB pathway activation.

View Article and Find Full Text PDF

Co(3)O(4) nanoparticles have been produced by mechanochemical reactions involving cobalt carbonate, sodium oxide and sodium carbonate. The mechanochemical reactions are carried out during milling at room temperature and the nanoparticles have been obtained without the need for any thermal treatment after the milling operation. The CoO phase is produced in the first 30 min of the mechanochemical process, followed by a second stage of oxidation to Co(3)O(4) which lasts for several hours.

View Article and Find Full Text PDF