The tripartite protein complex produced by anthrax bacteria (Bacillus anthracis) is a member of the AB family of β-barrel pore-forming toxins. The protective antigen (PA) component forms an oligomeric prepore that assembles on the host cell surface and serves as a scaffold for binding of lethal and edema factors. Following endocytosis, the acidic environment of the late endosome triggers a pH-induced conformational rearrangement to promote maturation of the PA prepore to a functional, membrane spanning pore that facilitates delivery of lethal and edema factors to the cytosol of the infected host.
View Article and Find Full Text PDFThe anthrax toxin protective antigen (PA), the membrane binding and pore-forming component of the anthrax toxin, was studied using F NMR. We site-specifically labeled PA with -fluorophenylalanine (pF-Phe) at Phe427, a critically important residue that comprises the ϕ-clamp that is required for translocation of edema factor (EF) and lethal factor (LF) into the host cell cytosol. We utilized F NMR to follow low-pH-induced structural changes in the prepore, alone and bound to the N-terminal PA binding domain of LF, LF.
View Article and Find Full Text PDFProtective antigen (PA) is a component of anthrax toxin that can elicit toxin-neutralizing antibody responses. PA is also the major antigen in the current vaccine to prevent anthrax, but stability problems with recombinant proteins have complicated the development of new vaccines containing recombinant PA. The relationship between antigen physical stability and immunogenicity is poorly understood, but there are theoretical reasons to think that this parameter can affect immune responses.
View Article and Find Full Text PDFRecent studies reveal that Seneca Valley Virus (SVV) exploits tumor endothelial marker 8 (TEM8) for cellular entry, the same surface receptor pirated by bacterial-derived anthrax toxin. This observation is particularly significant as SVV is a known oncolytic virus which selectively infects and kills tumor cells, particularly those of neuroendocrine origin. TEM8 is a transmembrane glycoprotein that is preferentially upregulated in some tumor cell and tumor-associated stromal cell populations.
View Article and Find Full Text PDF