We investigated the Diels-Alder reaction of 6,13-bis(triisopropylsilylethynyl)pentacene (1) with small dienophiles such as (bridged) dihydronaphthalenes/cyclohexenes that yielded adducts at the central ring, the other dienophiles predominantly or exclusively attacked the unsubstituted off-center ring. The difference in regioselectivity was investigated by DFT calculations. Apart from dispersion interactions, it is due to the steric demand of the dienophiles, which need to fit in between the silylethynyl substituents to react at the central ring.
View Article and Find Full Text PDFStronger chemical bonds withstand higher mechanical forces; thus, the rupture of single bonds is preferred over the rupture of double or triple bonds or aromatic rings. We investigated bond scission in poly(dialkyl--phenylene ethynylene)s (PPEs), a fully conjugated polymer. In a scale-bridging approach using electron-paramagnetic resonance spectroscopy and gel permeation chromatography of cryomilled samples, in combination with density functional theory calculations and coarse-grained simulations, we conclude that mechanical force cleaves the sp-sp bond of PPEs (bond dissociation energy as high as 600 kJ mol).
View Article and Find Full Text PDFNon-Kekulé quinoidal azaacences m-A (1 a,b) were synthesized and compared to their para- and ortho-quinodimethane analogues. m-A display high diradical characters (1 b: y = 0.88) due to their meta-quinodimethane (m-QDM) topology.
View Article and Find Full Text PDFThe higher acenes and azaacenes (>(aza)heptacenes) are fascinating, yet elusive materials. Their reactivity and sensitivity increases concomitantly with their size. In recent years, confinement techniques, that is isolation of acenes in matrices and on surfaces, has surpassed solution-based chemistry with respect to accessing the larger (hetero)acenes at the price of the accessibility of no more than a couple thousands of molecules.
View Article and Find Full Text PDF