Hollow channel plasma wakefield acceleration is a proposed method to provide high acceleration gradients for electrons and positrons alike: a key to future lepton colliders. However, beams which are misaligned from the channel axis induce strong transverse wakefields, deflecting beams and reducing the collider luminosity. This undesirable consequence sets a tight constraint on the alignment accuracy of the beam propagating through the channel.
View Article and Find Full Text PDFHigh gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. In these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch).
View Article and Find Full Text PDFAim: Considering the central role of dendritic cells (DCs) on the development of an antitumor immune response, in this study we used a murine model to evaluate how DC transfection with drug-treated tumor cell RNA changes their phenotype, and whether transfection enhances the in vivo effectiveness of a DC-based antitumor vaccine.
Materials And Methods: MC-38 colorectal tumor cells were pretreated with the minimum effective concentration of 5-fluorouracil (5-FU), then their total RNA was extracted and transfected into DCs. These DCs were inoculated into C57Bl/6 mice bearing subcutaneous MC-38 tumor.
The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe.
View Article and Find Full Text PDFPlasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion.
View Article and Find Full Text PDF