We present first hard X-ray photoelectron spectroscopy (HAXPES) results of aqueous salt solutions and dispersions of gold nanoparticles in liquid cells equipped with specially designed microfabricated thin silicon nitride membranes, with thickness in the 15-25 nm range, mounted in a high-vacuum-compatible environment. The experiments have been performed at the HAXPES endstation of the GALAXIES beamline at the SOLEIL synchrotron radiation facility. The low-stress membranes are fabricated from 100 mm silicon wafers using standard lithography techniques.
View Article and Find Full Text PDFThe generation of reactive oxygen species (ROS) the Fenton reaction has received significant attention for widespread applications. This reaction can be triggered by zero-valent metal nanoparticles by converting externally added HO into hydroxyl radicals (˙OH) in acidic media. To avoid the addition of external additives or energy supply, developing self-sustained catalytic systems enabling onsite production of HO at a neutral pH is crucial.
View Article and Find Full Text PDFIon exchange is one of the most interesting processes occurring at the interface between aqueous solutions and polymers, such as the well-known Nafion. If the exchanged ions have different diffusion coefficients, this interchange generates local electric fields which can be harnessed to drive fluid motion. In this work, we show how it is possible to design and fabricate self-propelling microswimmers based on Nafion, driven by ion-exchange, and fueled by innocuous salts.
View Article and Find Full Text PDFChemically propelled micropumps are promising wireless systems to autonomously drive fluid flows for many applications. However, many of these systems are activated by nocuous chemical fuels, cannot operate at high salt concentrations, or have difficulty for controlling flow directionality. In this work we report on a self-driven polymer micropump fueled by salt which can trigger both radial and unidirectional fluid flows.
View Article and Find Full Text PDF