Botanical varieties of hemp differ in chemical composition, plant morphology, agronomy, and industrial suitability. Hemp is popular for cultivation for the production of cannabinoid oil, fiber production, biomass, etc. The fertilization process is one of the most important factors affecting the plant, both its condition and chemical composition.
View Article and Find Full Text PDFDespite the significant progress in wound healing, chronic skin wounds remain a challenge for today's medicine. Due to the growing popularity of natural materials, silk protein-based dressings are gaining more attention in this field. Most studies refer to silk fibroin because sericin has been considered a waste product for years.
View Article and Find Full Text PDFRapid development of tissue engineering in recent years has increased the importance of three-dimensional (3D) bioprinting technology as novel strategy for fabrication functional 3D tissue and organoid models for pharmaceutical research. 3D bioprinting technology gives hope for eliminating many problems associated with traditional cell culture methods during drug screening. However, there is a still long way to wider clinical application of this technology due to the numerous difficulties associated with development of bioinks, advanced printers and in-depth understanding of human tissue architecture.
View Article and Find Full Text PDFThe popularity of hemp cultivation for industrial purposes has been steadily growing for many years. With the addition of products derived from these plants to the Novel Food Catalogue, maintained by the European Commission, a significant increase in interest in hemp food is also expected. The aim of the study was to determine the characteristics of hempseed, oil, and oil cake samples produced from experimental plots grown in different conditions.
View Article and Find Full Text PDFBackground: The present study aimed to demonstrate the superiority of bioethanol yield and its quality from sorghum using the granular starch degrading enzyme Stargen™ 002 over simultaneous saccharification and fermentation, and separate hydrolysis and fermentation using Zymomonas mobilis CCM 3881 and Ethanol Red® yeast.
Results: Bacteria were found to produce ethanol at higher yield than the yeast in all fermentations. The highest ethanol yield was obtained with Z.