Publications by authors named "J Frances Kamhi"

Many animals navigate in a structurally complex environment, which requires them to detour around the physical barriers that they encounter. Although many studies in animal cognition suggest that they are able to adeptly avoid obstacles, it is unclear whether a new route is learned to navigate around these barriers and, if so, what sensory information may be used to do so. We investigated detour learning in traveling up a tree in the Australian bull ant, Myrmecia midas, which primarily uses visual landmarks.

View Article and Find Full Text PDF

Insects possess small brains but exhibit sophisticated behaviour, specifically their ability to learn to navigate within complex environments. To understand how they learn to navigate in a cluttered environment, we focused on learning and visual scanning behaviour in the Australian nocturnal bull ant, Myrmecia midas, which are exceptional visual navigators. We tested how individual ants learn to detour via a gap and how they cope with substantial spatial changes over trips.

View Article and Find Full Text PDF

Prior to leaving home, insects acquire visual landmark information through a series of well-choreographed walks or flights of learning [1-4]. This information allows them to pinpoint goals both when in their vicinity [5-7] and from locations they have not previously visited [8-10]. It is presumed that animals returning home match memorized views to their current view for successful view-based navigation [11].

View Article and Find Full Text PDF

The behavioral demands of living in social groups have been linked to the evolution of brain size and structure, but how social organization shapes investment and connectivity within and among functionally specialized brain regions remains unclear. To understand the influence of sociality on brain evolution in ants, a premier clade of eusocial insects, we statistically analyzed patterns of brain region size covariation as a proxy for brain region connectivity. We investigated brain structure covariance in young and old workers of two formicine ants, the Australasian weaver ant Oecophylla smaragdina, a pinnacle of social complexity in insects, and its socially basic sister clade Formica subsericea.

View Article and Find Full Text PDF

Animals are active at different times of the day. Each temporal niche offers a unique light environment, which affects the quality of the available visual information. To access reliable visual signals in dim-light environments, insects have evolved several visual adaptations to enhance their optical sensitivity.

View Article and Find Full Text PDF