The underlying working principle of detecting impulsive stimulated scattering signals in a differential configuration of heterodyne diffraction detection is unraveled by involving optical scattering theory. The feasibility of the method for the thermoelastic characterization of coating-substrate systems is demonstrated on the basis of simulated data containing typical levels of noise. Besides the classical analysis of the photoacoustic part of the signals, which involves fitting surface acoustic wave dispersion curves, the photothermal part of the signals is analyzed by introducing thermal wave dispersion curves to represent and interpret their grating wavelength dependence.
View Article and Find Full Text PDFStarting from the Debye model for frequency-dependent specific heat and the Vogel-Fulcher-Tammann (VFT) model for its relaxation time, an analytic expression is presented for the heat capacity versus temperature trace for differential scanning calorimetry (DSC) of glass transitions, suggesting a novel definition of the glass transition temperature based on a dimensionless criterion. An explicit expression is presented for the transition temperature as a function of the VFT parameters and the cooling rate, and for the slope as a function of fragility. Also a generalization of the results to non-VFT and non-Debye relaxation is given.
View Article and Find Full Text PDF