Publications by authors named "J Finsterbusch"

Article Synopsis
  • Clinical research typically requires careful study designs that account for variables like sex and age, but often overlooks body size factors like height and weight in neuroimaging studies.
  • This study analyzed data from 267 healthy adults to explore how body height and weight relate to various brain and spinal cord MRI metrics, finding significant correlations, especially with brain gray matter volume and cervical spinal cord area.
  • The results suggest that body size is an important biological variable that should be included in clinical neuroimaging study designs to enhance accuracy in understanding brain and spinal cord structures.
View Article and Find Full Text PDF

The application of functional magnetic resonance imaging (fMRI) to the human spinal cord is still a relatively small field of research and faces many challenges. Here we aimed to probe the limitations of task-based spinal fMRI at 3T by investigating the reliability of spinal cord blood oxygen level dependent (BOLD) responses to repeated nociceptive stimulation across two consecutive days in 40 healthy volunteers. We assessed the test-retest reliability of subjective ratings, autonomic responses, and spinal cord BOLD responses to short heat pain stimuli (1s duration) using the intraclass correlation coefficient (ICC).

View Article and Find Full Text PDF

Force generation is a crucial element of dexterity and a highly relevant skill of the human motor system. How cerebral and spinal components interact and how spinal activation is associated with the activity in the cerebral primary motor and premotor areas is poorly understood. Here, we conducted combined cortico-spinal functional magnetic resonance imaging during a simple visually guided isometric force generation task in 20 healthy young subjects.

View Article and Find Full Text PDF

Mapping the neural patterns that drive human behavior is a key challenge in neuroscience. Even the simplest of our everyday actions stem from the dynamic and complex interplay of multiple neural structures across the central nervous system (CNS). Yet, most neuroimaging research has focused on investigating cerebral mechanisms, while the way the spinal cord accompanies the brain in shaping human behavior has been largely overlooked.

View Article and Find Full Text PDF

The investigation of spontaneous fluctuations of the blood-oxygen-level-dependent (BOLD) signal has recently been extended from the brain to the spinal cord, where it has stimulated interest from a clinical perspective. A number of resting-state functional magnetic resonance imaging (fMRI) studies have demonstrated robust functional connectivity between the time series of BOLD fluctuations in bilateral dorsal horns and between those in bilateral ventral horns, in line with the functional neuroanatomy of the spinal cord. A necessary step prior to extension to clinical studies is assessing the reliability of such resting-state signals, which we aimed to do here in a group of 45 healthy young adults at the clinically prevalent field strength of 3T.

View Article and Find Full Text PDF