Unlabelled: In absence of the high-frequency measurements of wind components, sonic temperature and water vapour required by the eddy covariance (EC) method, Monin-Obukhov similarity theory (MOST) is often used to calculate heat fluxes. However, MOST requires assumptions of stability corrections and roughness lengths. In most environments and weather situations, roughness length and stability corrections have high uncertainty.
View Article and Find Full Text PDFOn 7 February 2021, a catastrophic mass flow descended the Ronti Gad, Rishiganga, and Dhauliganga valleys in Chamoli, Uttarakhand, India, causing widespread devastation and severely damaging two hydropower projects. More than 200 people were killed or are missing. Our analysis of satellite imagery, seismic records, numerical model results, and eyewitness videos reveals that ~27 × 10 cubic meters of rock and glacier ice collapsed from the steep north face of Ronti Peak.
View Article and Find Full Text PDFMore than half of all tropical forests are degraded by human impacts, leaving them threatened with conversion to agricultural plantations and risking substantial biodiversity and carbon losses. Restoration could accelerate recovery of aboveground carbon density (ACD), but adoption of restoration is constrained by cost and uncertainties over effectiveness. We report a long-term comparison of ACD recovery rates between naturally regenerating and actively restored logged tropical forests.
View Article and Find Full Text PDFNotwithstanding ambiguities, long-term economic resurgence in Afghanistan amidst water insecurity exacerbated by climate change decisively requires a water protection strategy that will complement a multitude of agroindustrial and socioeconomic activities in an environmentally sustainable and climate resilient manner. In this paper, we begin with a perspective on institutions, legislation, and key issues in the water sector of Afghanistan. We then embark on linking the integrated water resources management (IWRM) and strategic environmental assessment (SEA) approaches as a novel framework for strategic water management and subsequently propose a strategy for post-conflict water protection based on the coalesced IWRM and SEA.
View Article and Find Full Text PDF