This study is concerned with prediction of the "wind noise" component of ambient noise (AN) in the ocean. It builds on the seminal paper by Felizardo and Melville [(1995). J.
View Article and Find Full Text PDFPhase transitions are crucial in shaping the collective dynamics of a broad spectrum of natural systems across disciplines. Here, we report two distinct heterogeneous nucleation facilitating single step and multistep phase transitions to global synchronization in a finite-size adaptive network due to the trade off between time scale adaptation and coupling strength disparities. Specifically, small intracluster nucleations coalesce either at the population interface or within the populations resulting in the two distinct phase transitions depending on the degree of the disparities.
View Article and Find Full Text PDFPhase transitions in equilibrium and nonequilibrium systems play a major role in the natural sciences. In dynamical networks, phase transitions organize qualitative changes in the collective behavior of coupled dynamical units. Adaptive dynamical networks feature a connectivity structure that changes over time, coevolving with the nodes' dynamical state.
View Article and Find Full Text PDFThis manuscript discusses the utility of maximal period linear binary pseudorandom sequences [also referred to as m-sequences or maximum length sequences (MLSs)] and linear frequency-modulated (LFM) sweeps for the purpose of measuring travel-time in ocean-acoustic experiments involving moving sources. Signal design and waveform response to unknown Doppler (waveform dilation or scale factor) are reviewed. For this two-parameter estimation problem, the well-known wide-band ambiguity function indicates, and moving-source observations corroborate, a significant performance benefit from using MLS over LFM waveforms of similar time duration and bandwidth.
View Article and Find Full Text PDFAdaptive dynamical networks appear in various real-word systems. One of the simplest phenomenological models for investigating basic properties of adaptive networks is the system of coupled phase oscillators with adaptive couplings. In this paper, we investigate the dynamics of this system.
View Article and Find Full Text PDF