Publications by authors named "J Fex"

Through thin-section and freeze-fracture electron microscopy, we identify structural correlates of an intense vesicular traffic in a narrow band of cytoplasm around the cuticular plate of the bullfrog vestibular hair cells. Myriads of coated and uncoated vesicles associated with longitudinally oriented microtubules populate the narrow cytoplasmic region between the cuticular plate and the actin network of the apical junctional belt. If microtubules in the sensory hair cells, like those in axons, are pathways for organelle transport, then the characteristic distribution of microtubules around the cuticular plate represents transport pathways across the apical region of the hair cells.

View Article and Find Full Text PDF

Waardenburg syndrome is an autosomal dominant disorder characterized by sensorineural deafness and pigmentary disturbances. Previous work has linked the disease to PAX3 on chromosome 2, and several mutations within the highly conserved paired-box and octapeptide motifs, but not the homeobox, have been reported. In this report, we have used the published cDNA sequence to further define the genomic structure of PAX3, using inverse PCR.

View Article and Find Full Text PDF

X-linked deafness is a rare cause of hereditary hearing impairment. We have identified a family with X-linked dominant sensorineural hearing impairment, characterized by incomplete penetrance and variable expressivity in carrier females, that is linked to the Xp21.2, which contains the Duchenne muscular dystrophy (DMD) locus.

View Article and Find Full Text PDF

The actin matrix of the cuticular plate, which supports the sensory stereocilia bundle, is coupled to the axial cytoskeleton of the hair cell through a well defined microtubule columnar framework. A collection of axial microtubules in a columnar organization penetrate deep into the dense actin matrix of the cuticular plate. Each microtubule displays at the end a 300-500 nm long fuzzy cap that enmeshes with the actin matrix of the cuticular plate.

View Article and Find Full Text PDF

The mouse microphthalmia (mi) gene encodes a basic-helix-loop-helix-zipper protein whose mutations may lead to loss of pigmentation in the eye, inner ear and skin, and to reduced eye size and early onset deafness. Mice with mutations at mi serve as models for human pigment disturbances in skin and eye that may be combined with sensorineural deafness. We have now obtained cDNA and genomic clones of the human homolog of mouse mi, identified a restriction fragment length polymorphism in the gene, and mapped the gene by somatic cell hybrid and fluorescence in situ hybridization techniques to a region of human chromosome 3 that shows a disrupted syntenic conservation with the region on mouse chromosome 6 to which mi maps.

View Article and Find Full Text PDF