Brucella are facultative intracellular bacteria that cause chronic infections by limiting innate immune recognition. It is currently unknown whether Brucella FliC flagellin, the monomeric subunit of flagellar filament, is sensed by the host during infection. Here, we used two mutants of Brucella melitensis, either lacking or overexpressing flagellin, to show that FliC hinders bacterial replication in vivo.
View Article and Find Full Text PDFIt was recently demonstrated that the pathogen Brucella melitensis produces a polar sheathed flagellum under the control of the master regulator FtcR. However, the regulatory mechanism controlling the flagellar assembly remains unknown. In this work, we investigate the flagellar hierarchy of B.
View Article and Find Full Text PDFThe genome of Brucella melitensis contains genes coding for the sigma factors RpoD, RpoN, RpoH1, RpoH2, RpoE1 and RpoE2. Previously published data show that B. melitensis is flagellated and that an rpoE1 mutant overexpresses the flagellar protein FlgE.
View Article and Find Full Text PDFBMC Res Notes
December 2010
Background: It was recently shown that B. melitensis is flagellated. However, the flagellar structure remains poorly described.
View Article and Find Full Text PDFThe flagellar regulon of Brucella melitensis 16M contains 31 genes clustered in three loci on the small chromosome. These genes encode a polar sheathed flagellum that is transiently expressed during vegetative growth and required for persistent infection in a mouse model. By following the expression of three flagellar genes (fliF, flgE, and fliC, corresponding to the MS ring, hook, and filament monomer, respectively), we identified a new regulator gene, ftcR (flagellar two-component regulator).
View Article and Find Full Text PDF