Publications by authors named "J Fernandez-Perez"

Multiple Sclerosis (MS) is a chronic neurological condition that impairs motor and sensory functions, particularly gait. Non-invasive neuromodulation techniques aim to enhance functional recovery and motor-cognitive outcomes, though their effectiveness remains debated. This study compared the effects of transcranial direct current stimulation (tDCS) and trans-spinal direct current stimulation (tsDCS), combined with robotic-assisted gait training (RAGT), on motor function and fatigue in people with MS (pwMS).

View Article and Find Full Text PDF

Preclinical studies have evidenced a peripheral nerve blockade with kilohertz high-frequency alternating current (KHFAC) stimulation. It could have a potential effect on aberrant nerve hyperactivity, such as tremor in people with Parkinson's disease (PwPD). The objective was to investigate the effects of transcutaneous KHFAC at 10 kHz compared with sham intervention on tremor modulation, upper limb motor function, and adverse events in PwPD.

View Article and Find Full Text PDF

Background: Kilohertz high-frequency alternating current (KHFAC) stimulation has demonstrated to induce rapid and reversible nerve blocks without causing nerve damage. Previous studies have explored frequency-dependent effects using a transcutaneous approach in humans from 5 to 20 kHz. Nevertheless, its application in humans is limited by the lack of stimulators approved for frequencies above 20 kHz.

View Article and Find Full Text PDF

In recent years, it has become clear that artificial intelligence (AI) models can achieve high accuracy in specific pathology-related tasks. An example is our deep-learning model, designed to automatically detect serous tubal intraepithelial carcinoma (STIC), the precursor lesion to high-grade serous ovarian carcinoma, found in the fallopian tube. However, the standalone performance of a model is insufficient to determine its value in the diagnostic setting.

View Article and Find Full Text PDF
Article Synopsis
  • Pathogenic bacteria, like Streptococcus pyogenes, need to acquire iron for growth, making their metal import systems potential targets for new antibiotics.
  • S. pyogenes uses the FtsABCD iron uptake system to transport iron from hydroxamate siderophores, despite not being able to produce these compounds itself.
  • Research showed that the protein FtsB can bind various siderophores (like ferrichrome and ferrioxamine) with high affinity, indicating S. pyogenes can exploit these other microorganisms' iron sources through specific interactions.
View Article and Find Full Text PDF