Background: After 18 months of responding to the COVID-19 pandemic, there is still no agreement on the optimal combination of mitigation strategies. The efficacy and collateral damage of pandemic policies are dependent on constantly evolving viral epidemiology as well as the volatile distribution of socioeconomic and cultural factors. This study proposes a data-driven approach to quantify the efficacy of the type, duration, and stringency of COVID-19 mitigation policies in terms of transmission control and economic loss, personalised to individual countries.
View Article and Find Full Text PDFWe report an experimental investigation of an all-DNA gel composed by tetra-functional DNA nanoparticles acting as network nodes and bi-functional ones acting as links. The DNA binding sequence is designed to generate at room and lower temperatures a persistent long-lived network. Exploiting ideas from DNA-nanotechnology, we implement in the binding base sequences an appropriate exchange reaction which allows links to swap, constantly retaining the total number of network links.
View Article and Find Full Text PDFWe characterize via small-angle neutron scattering the structural properties of a mixture of all-DNA particles with functionalities 4 (A) and 2 (B) constrained by design to reside close to the percolation threshold. DNA base sequences are selected such that A particles can only bind with B ones and that at the studied temperature (10 °C) all AB bonds are formed and long-lived, originating highly polydisperse persistent equilibrium clusters. The concentration dependence of the scattered intensity and its wavevector dependence is exploited to determine the fractal dimension and the size distribution of the clusters, which are found to be consistent with the critical exponents of the 3-D percolation universality class.
View Article and Find Full Text PDFWe present systematic characterisation by means of dynamic light scattering and particle tracking techniques of the viscosity and of the linear viscoelastic moduli, G'(ω) and G''(ω), for two different DNA hydrogels. These thermoreversible systems are composed of tetravalent DNA-made nanostars whose sticky sequence is designed to provide controlled interparticle bonding. While the first system forms a gel on cooling, the second one has been programmed to behave as a re-entrant gel, turning again to a fluid solution at low temperature.
View Article and Find Full Text PDFThe proper design of DNA sequences allows for the formation of well-defined supramolecular units with controlled interactions via a consecution of self-assembling processes. Here, we benefit from the controlled DNA self-assembly to experimentally realize particles with well-defined valence, namely, tetravalent nanostars (A) and bivalent chains (B). We specifically focus on the case in which A particles can only bind to B particles, via appropriately designed sticky-end sequences.
View Article and Find Full Text PDF