Publications by authors named "J Fernandez-Arribas"

The environmental persistence of organophosphate flame retardants (OPFRs) in water is becoming and environmental concern. White Rot Fungi (WRF) have proven its capability to degrade certain OPFRs such as tributyl phosphate (TBP), tris(2-butoxyethyl) phosphate (TBEP), tris(2-chloroethyl) phosphate (TCEP) and tris(2-chloroisopropyl) phosphate (TCPP). Despite this capability, there is limited knowledge about the specific pathways involved in the degradation.

View Article and Find Full Text PDF

The development of methodologies for the determination of plasticizers is essential for assessing the environmental and human impact resulting from the use of plastics. A fast analytical method with on-line purification based on turbulent flow chromatography (TFC) coupled to tandem mass spectrometry (MS-MS) has been developed for the analysis of ten phthalates, four alternative plasticizers (including adipates and citrates), and 20 organophosphate esters (OPEs). The method has been validated for the determination of plasticizers across different matrices.

View Article and Find Full Text PDF

Plastic materials contain additives such as plasticizers and flame retardants, which are not covalently bound to plastic polymers and can therefore be unintentionally released into the marine environment. This study investigated three families of compounds, phthalates (PAEs), organophosphate esters (OPEs), and non-phthalate plasticizers (NPPs) currently used as plastic additives, in 48 muscle samples of bogue (Boops boops), European hake (Merluccius merluccius), red mullet (Mullus barbatus), and European pilchard (Sardina pilchardus) sampled in the Central Adriatic and the Ligurian Seas. The additional goal of this study is to assess the potential risk to human health from fish consumption with the objective of determining whether the detected levels might potentially pose a concern.

View Article and Find Full Text PDF

Disposable masks, formed mainly from polymers, often incorporate various chemical additives to enhance their performance. These additives, which include plasticizers, may be released during mask usage, presenting a novel source of human exposure to these compounds. In this study, the presence of 16 organophosphate esters (OPEs), 11 phthalates, and four alternative plasticizers, in four various types of face masks, were studied, as well as their release during simulated mask use (artificial laboratory conditions).

View Article and Find Full Text PDF

Drinks are an essential part of human diet, which makes them a source of human exposure to plasticizers such as organophosphate esters (OPEs). The current study provides new information about sixteen OPE levels in 75 different samples (tap water, packed water, cola drinks, juice, wine and hot drinks). Tap water mean levels (40.

View Article and Find Full Text PDF