We have performed the first direct measurement of two resonances of the ^{7}Be(α,γ)^{11}C reaction with unknown strengths using an intense radioactive ^{7}Be beam and the DRAGON recoil separator. We report on the first measurement of the 1155 and 1110 keV resonance strengths of 1.73±0.
View Article and Find Full Text PDFWe present the first direct measurement of an astrophysical reaction using a radioactive beam of isomeric nuclei. In particular, we have measured the strength of the key 447-keV resonance in the ^{26m}Al(p,γ)^{27}Si reaction to be 432_{-226}^{+146} meV and find that this resonance dominates the thermally averaged reaction rate for temperatures between 0.3 and 2.
View Article and Find Full Text PDFHow does nature hold together protons and neutrons to form the wide variety of complex nuclei in the Universe? Describing many-nucleon systems from the fundamental theory of quantum chromodynamics has been the greatest challenge in answering this question. The chiral effective field theory description of the nuclear force now makes this possible but requires certain parameters that are not uniquely determined. Defining the nuclear force needs identification of observables sensitive to the different parametrizations.
View Article and Find Full Text PDFWe have performed the first direct measurement of the ^{38}K(p,γ)^{39}Ca reaction using a beam of radioactive ^{38}K. A proposed ℓ=0 resonance in the ^{38}K+p system has been identified at 679(2) keV with an associated strength of 120_{-30}^{+50} meV. Upper limits of 1.
View Article and Find Full Text PDFIn Wolf-Rayet and asymptotic giant branch (AGB) stars, the (26g)Al(p,γ)(27)Si reaction is expected to govern the destruction of the cosmic γ-ray emitting nucleus (26)Al. The rate of this reaction, however, is highly uncertain due to the unknown properties of key resonances in the temperature regime of hydrogen burning. We present a high-resolution inverse kinematic study of the (26g)Al(d,p)(27)Al reaction as a method for constraining the strengths of key astrophysical resonances in the (26g)Al(p,γ)(27)Si reaction.
View Article and Find Full Text PDF