Publications by authors named "J F de Jonghe"

Understanding the rapidly evolving landscape of single-cell and spatial omic technologies is crucial for advancing biomedical research and drug development. We provide a living review of both mature and emerging commercial platforms, highlighting key methodologies and trends shaping the field. This review spans from foundational single-cell technologies such as microfluidics and plate-based methods to newer approaches like combinatorial indexing; on the spatial side, we consider next-generation sequencing and imaging-based spatial transcriptomics.

View Article and Find Full Text PDF
Article Synopsis
  • Precision medicine relies on understanding genetic variants that cause disease and their effects, exemplified by the von Hippel-Lindau (VHL) gene involved in tumor suppression.
  • VHL mutations are linked to specific types of tumors, like clear cell renal cell carcinoma, necessitating refined methods to assess their consequences.
  • Researchers developed a technique to analyze nearly all single-nucleotide variants in VHL, leading to the identification of key pathogenic variants and enhancing the ability to classify these genetic changes in clinical settings.
View Article and Find Full Text PDF
Article Synopsis
  • Droplet microfluidic methods have improved the efficiency of single-cell sequencing but face challenges like increased background noise and lower RNA capture rates due to the lack of effective cell enrichment strategies.
  • The presented methodology uses fluorescence-activated droplet sorting to isolate droplets containing viable or specific cell types and employs picoinjection for multi-step processes, enhancing gene detection by five times and reducing noise by up to 50%.
  • This approach successfully creates a high-quality molecular atlas of mouse brain development and nascent RNA transcription during organogenesis, and can be adapted for various other droplet-based workflows to achieve cost-effective and precise single-cell profiling.
View Article and Find Full Text PDF
Article Synopsis
  • Biomechanical cues are crucial for embryonic development and cell differentiation, and studying these can reveal how physical stimuli influence gene expression during early mammalian development.
  • By using microfluidic techniques to encapsulate mouse embryonic stem cells, researchers found that Plakoglobin (Jup), a key protein, enhances the network responsible for maintaining naive pluripotency.
  • The study highlights Plakoglobin's role as a mechanosensitive regulator, suggesting that its expression during blastocyst formation in both human and mouse embryos is vital for understanding cell fate transitions influenced by the physical environment.
View Article and Find Full Text PDF