The organization of myofibers and extra cellular matrix within the myocardium plays a significant role in defining cardiac function. When pathological events occur, such as myocardial infarction (MI), this organization can become disrupted, leading to degraded pumping performance. The current study proposes a multiscale finite element (FE) framework to determine realistic fiber distributions in the left ventricle (LV).
View Article and Find Full Text PDFChlorite (ClO) is a regulated byproduct of chlorine dioxide water treatment processes. The transformation of chlorite under UV irradiation into chloride (Cl) and chlorate (ClO) involves reactive species chain reactions that could enhance chlorine dioxide water treatment efficiency while reducing residual chlorite levels. This study conducted a mechanistic investigation of chlorite phototransformation by analyzing reaction intermediates and stable end products, including chlorine dioxide (ClO), free chlorine (HOCl/OCl), hydroxyl‑radical (OH), Cl, and ClO through combined experimental and modeling approaches.
View Article and Find Full Text PDFAdvanced oxidation processes (AOPs) are a growing research field with a large variety of different process variants and materials being tested at laboratory scale. However, despite extensive research in recent years and decades, many variants have not been transitioned to pilot- and full-scale operation. One major concern are the inconsistent experimental approaches applied across different studies that impede identification, comparison, and upscaling of the most promising AOPs.
View Article and Find Full Text PDFThe absolute radical quantum yield () is a critical parameter to evaluate the efficiency of radical-based processes in engineered water treatment. However, measuring is fraught with challenges, as current quantification methods lack selectivity, specificity, and anti-interference capabilities, resulting in significant error propagation. Herein, we report a direct and reliable time-resolved technique to determine at pH 7.
View Article and Find Full Text PDF