Publications by authors named "J F Teahan"

Scanning ion conductance microscopy (SICM) is a powerful and versatile technique that allows an increasingly wide range of interfacial properties and processes to be studied. SICM employs a nanopipette tip that contains electrolyte solution and a quasi-reference counter electrode (QRCE), to which a potential is applied with respect to a QRCE in a bathing solution, in which the tip is placed. The work herein considers the potential-controlled delivery of uncharged electroactive molecules (solute) from an SICM tip to a working electrode substrate to determine the effect of the substrate on electroosmotic flow (EOF).

View Article and Find Full Text PDF

An artificial synapse is developed that mimics ultramicroelectrode (UME) amperometric detection of single cell exocytosis. It comprises the nanopipette of a scanning ion conductance microscope (SICM), which delivers rapid pulses of neurotransmitter (dopamine) locally and on demand at >1000 defined locations of a carbon fiber (CF) UME in each experiment. Analysis of the resulting UME current-space-time data reveals spatiotemporal heterogeneous electrode activity on the nanoscale and submillisecond time scale for dopamine electrooxidation at typical UME detection potentials.

View Article and Find Full Text PDF

Background: Transcription in mammalian cells is a complex stochastic process involving shuttling of polymerase between genes and phase-separated liquid condensates. It occurs in bursts, which results in vastly different numbers of an mRNA species in isogenic cell populations. Several factors contributing to transcriptional bursting have been identified, usually classified as intrinsic, in other words local to single genes, or extrinsic, relating to the macroscopic state of the cell.

View Article and Find Full Text PDF

This paper reports on the use of scanning ion conductance microscopy (SICM) to locally map the ionic properties and charge environment of two live bacterial strains: the Gram-negative and the Gram-positive . SICM results find heterogeneities across the bacterial surface and significant differences among the Gram-positive and Gram-negative bacteria. The bioelectrical environment of the was found to be considerably more negatively charged compared to .

View Article and Find Full Text PDF

Control of complex intracellular pathways such as protein synthesis is critical to organism survival, but is poorly understood. Translation of a reading frame in eukaryotic mRNA is preceded by a scanning process in which a subset of translation factors helps guide ribosomes to the start codon. Here, we perform comparative analysis of the control status of this scanning step that sits between recruitment of the small ribosomal subunit to the m GpppG-capped 5'end of mRNA and of the control exerted by downstream phases of polypeptide initiation, elongation and termination.

View Article and Find Full Text PDF