Publications by authors named "J F Rodriguez-Sierra"

Microbial degradation of aromatic hydrocarbons is an emerging technology, and it is well recognized for its economic methods, efficiency, and safety; however, its exploration is still scarce and greater emphasis on cyanobacteria-bacterial mutualistic interactions is needed. We evaluated and characterized the phenanthrene biodegradation capacity of consortium dominated by sp. under holoxenic conditions with aerobic heterotrophic bacteria and their molecular identification through 16S rRNA Illumina sequencing.

View Article and Find Full Text PDF

Parkinson's disease, characterized by motor dysfunction due to the loss of nigrostriatal dopaminergic neurons, is one of the most prevalent age-related neurodegenerative disorders. Given there is no current cure, the stem cell approach has emerged as a viable therapeutic option to replace the dopaminergic neurons that are progressively lost to the disease. The success of the approach is likely to depend upon accessible, renewable, immune compatible, and non-tumorigenic sources of neural progenitors from which stable dopaminergic neurons can be generated efficaciously.

View Article and Find Full Text PDF

MUC4 is a type-1 transmembrane glycoprotein and is overexpressed in many carcinomas. It is a heterodimeric protein of 930 kDa, composed of a mucin-type subunit, MUC4alpha, and a membrane-bound growth factor-like subunit, MUC4beta. MUC4 mRNA contains unique 5' and 3' coding sequences along with a large variable number of tandem repeat (VNTR) domain of 7-19 kb.

View Article and Find Full Text PDF

Object: The aim of the study was to perform endoscopic anatomical studies of skull base structures through the sphenoid sinus in order to better understand endoscopic approaches to skull base lesions.

Methods: Anatomical studies were performed on six cadavers using sinus endoscopes. The sphenoid sinus was entered via a sublabial nasoseptal approach.

View Article and Find Full Text PDF

In this report we partially characterize a pathway projecting to the posterior ventral cochlear nucleus (PVCN) of the rat brain that transiently expresses a high level of acetylcholinesterase (AChE). The AChE-positive axons form a network that envelops a discrete region of the PVCN that includes the octopus cell region and some cells rostral to it. AChE is first detectable by postnatal day 3 (P3), peaks in expression at about P7-10, and is barely detectable in our preparations by P15.

View Article and Find Full Text PDF