Publications by authors named "J F Liewald"

Chemical synaptic transmission is modulated to accommodate different activity levels, thus enabling homeostatic scaling in pre- and postsynaptic compartments. In nematodes, cholinergic neurons use neuropeptide signaling to modulate synaptic vesicle content. To explore if this mechanism is conserved in vertebrates, we studied the involvement of neuropeptides in cholinergic transmission at the neuromuscular junction of larval zebrafish.

View Article and Find Full Text PDF

At chemical synapses, voltage-gated Ca channels (VGCCs) translate electrical signals into a trigger for synaptic vesicle (SV) fusion. VGCCs and the Ca microdomains they elicit must be located precisely to primed SVs to evoke rapid transmitter release. Localization is mediated by Rab3-interacting molecule (RIM) and RIM-binding proteins, which interact and bind to the C terminus of the CaV2 VGCC α-subunit.

View Article and Find Full Text PDF

Sensation of light is essential for all organisms. The eye-less nematode Caenorhabditis elegans detects UV and blue light to evoke escape behavior. The photosensor LITE-1 absorbs UV photons with an unusually high extinction coefficient, involving essential tryptophans.

View Article and Find Full Text PDF
Article Synopsis
  • Excitable cells can be manipulated using optogenetics, but traditional methods often lead to adaptation in neurons rather than true control.
  • A new technique called optogenetic voltage-clamp (OVC) uses the voltage-indicator QuasAr2 for real-time feedback to precisely control neurons and muscles in C. elegans and rat brain slices.
  • This approach enables detailed monitoring of cellular physiology and dynamic
View Article and Find Full Text PDF

Acutely silencing specific neurons informs about their functional roles in circuits and behavior. Existing optogenetic silencers include ion pumps, channels, metabotropic receptors, and tools that damage the neurotransmitter release machinery. While the former hyperpolarize the cell, alter ionic gradients or cellular biochemistry, the latter allow only slow recovery, requiring de novo synthesis.

View Article and Find Full Text PDF