Perovskite oxides form a large family of materials with applications across various fields, owing to their structural and chemical flexibility. Efficient exploration of this extensive compositional space is now achievable through automated high-throughput experimentation combined with machine learning. In this study, we investigate the composition-structure-performance relationships of high-entropy LaSrMnCoFeO perovskite oxides (0 < x, y, z <1; x+y+z≈1) for application as oxygen electrodes in Solid Oxide Cells.
View Article and Find Full Text PDFGrain boundary (GB) mass transport, and chemistry exert a pronounced influence on both the performance and stability of electrodes for solid oxide electrochemical cells. Lanthanum strontium cobalt ferrite (LSCF6428) is applied as a model mixed ionic and electronic conducting (MIEC) perovskite oxide. The cation-vacancy distribution at the GBs is studied at both single and multi-grain scales using high-resolution characterization techniques and computational approaches.
View Article and Find Full Text PDFActive inference describes (Bayes-optimal) behaviour as being motivated by the minimisation of surprise of one's sensory observations, through the optimisation of a generative model (of the hidden causes of one's sensory data) in the brain. One of active inference's key appeals is its conceptualisation of precision as biasing neuronal communication and, thus, inference within generative models. The importance of precision in perceptual inference is evident-many studies have demonstrated the importance of ensuring precision estimates are correct for normal (healthy) sensation and perception.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
October 2023
A fundamental understanding of the electrochemical reactions and surface chemistry at the solid-gas interface and is critical for electrode materials applied in electrochemical and catalytic applications. Here, the surface reactions and surface composition of a model of mixed ionic and electronic conducting (MIEC) perovskite oxide, (LaSr)CrFeO (LSCrF8255), were investigated using synchrotron-based near-ambient pressure (AP) X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine-structure spectroscopy (NEXAFS). The measurements were conducted with a surface temperature of 500 °C under 1 mbar of dry oxygen and water vapor, to reflect the implementation of the materials for oxygen reduction/evolution and HO electrolysis in the applications such as solid oxide fuel cell (SOFC) and electrolyzers.
View Article and Find Full Text PDF