The potential toxicity of beryllium at low levels of exposure means that a biological and/or air monitoring strategy may be required to monitor the exposure of subjects. The main objective of the work presented in this manuscript was to develop and validate a sensitive and reproducible method for determining levels of beryllium in human urine and to establish reference values in workers and in non-occupationally exposed people. A chelate of beryllium acetylacetonate formed from beryllium(II) in human urine was pre-concentrated on a SPE C18 cartridge and eluted with methanol.
View Article and Find Full Text PDFYarrowia lipolytica, located at the frontier of hemiascomycetous yeasts and fungi, is an excellent candidate for studies of metabolism evolution. This yeast, widely recognized for its technological applications, in particular produces volatile sulfur compounds (VSCs) that fully contribute to the flavor of smear cheese. We report here a relevant global vision of sulfur metabolism in Y.
View Article and Find Full Text PDFMetabolic profiles of biofluids obtained by atmospheric pressure ionization mass spectrometry-based technologies contain hundreds to thousands of features, most of them remaining unknown or at least not characterized in analytical systems. We report here on the annotation of the human adult urinary metabolome and metabolite identification from electrospray ionization mass spectrometry (ESI-MS)-based metabolomics data sets. Features of biological interest were first of all annotated using the ESI-MS database of the laboratory.
View Article and Find Full Text PDFOverhydrated hereditary stomatocytosis, clinically characterized by hemolytic anemia, is a rare disorder of the erythrocyte membrane permeability to monovalent cations, associated with mutations in the Rh-associated glycoprotein gene. We assessed the red blood cell metabolome of 4 patients with this disorder and showed recurrent metabolic abnormalities associated with this disease but not due to the diminished half-life of their erythrocytes. Glycolysis is exhausted with accumulation of ADP, pyruvate, lactate, and malate.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
September 2011
Hemiascomycetes are separated by considerable evolutionary distances and, as a consequence, the mechanisms involved in sulfur metabolism in the extensively studied yeast, Saccharomyces cerevisiae, could be different from those of other species of the phylum. This is the first time that a global view of sulfur metabolism is reported in the biotechnological yeast Kluyveromyces lactis. We used combined approaches based on transcriptome analysis, metabolome profiling, and analysis of volatile sulfur compounds (VSCs).
View Article and Find Full Text PDF