The emergence of cellular immunotherapy treatments is introducing more efficient strategies to combat cancer as well as autoimmune and infectious diseases. However, the cellular manufacturing procedures associated with these therapies remain costly and time-consuming, thus limiting their applicability. Recently, lymph-node-inspired PEG-heparin hydrogels have been demonstrated to improve primary human T cell culture at the laboratory scale.
View Article and Find Full Text PDFT cell migration plays an essential role in the immune response and T cell-based therapies. It can be modulated by chemical and physical cues such as electric fields (EFs). The mechanisms underlying electrotaxis (cell migration manipulated by EFs) are not fully understood and systematic studies with immune cells are rare.
View Article and Find Full Text PDFPolymeric coatings are a promising option for the development of delivery systems for orally administered drugs. However, the gastrointestinal conditions to which they are subjected, which include low pH and solubility as well as peristaltic movements, can limit their applications. In this work, different formulations of polymeric coatings were produced using pH-sensitive materials consisting of copolymers of methyl acrylate, methyl methacrylate, and methacrylic acid.
View Article and Find Full Text PDFBackground Aims: With the objective of improving the ex vivo production of therapeutic chimeric antigen receptor (CAR) T cells, we explored the addition of three-dimensional (3D) polystyrene scaffolds to standard suspension cell cultures.
Methods: We aimed to mimic the structural support given by the lymph nodes during in vivo lymphocyte expansion.
Results: We observed an increase in cell proliferation compared with standard suspension systems as well as an enhanced cytotoxicity toward cancer cells.
Tumoroids are 3D in vitro models that recapitulate key features of in vivo tumors, such as their architecture - hypoxic center and oxygenated outer layer - in contrast with traditional 2D cell cultures. Moreover, they may be able to preserve the patient-specific signature in terms of cell heterogeneity and mutations. Tumoroids are, therefore, interesting tools for improving the understanding of cancer biology, developing new drugs, and potentially designing personalized therapeutic plans.
View Article and Find Full Text PDF