Publications by authors named "J F Gaiser"

Computational approaches for small-molecule drug discovery now regularly scale to the consideration of libraries containing billions of candidate small molecules. One promising approach to increased the speed of evaluating billion-molecule libraries is to develop succinct representations of each molecule that enable the rapid identification of molecules with similar properties. Molecular fingerprints are thought to provide a mechanism for producing such representations.

View Article and Find Full Text PDF

Objective: To examine awareness, information-seeking, and use of MyPlate among US adults with young children.

Design: Secondary analysis of cross-sectional data from the 2015-2018 National Health and Nutrition Examination Survey (NHANES).

Participants: US adults aged 18-45 years with children ≤5 years.

View Article and Find Full Text PDF

It is widely accepted that milk provides the greatest relief from capsaicin burn, an effect typically attributed to its fat content and temperature. Previously, Lawless et al. reported partitioning lipophilic capsaicin in fat reduces burn, whereas Green showed lower temperature reduces burn.

View Article and Find Full Text PDF

The COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availability of vaccines, searching for efficient small-molecule drugs that are widely available, including in low- and middle-income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the "Billion molecules against COVID-19 challenge", to identify small-molecule inhibitors against SARS-CoV-2 or relevant human receptors.

View Article and Find Full Text PDF

The SARS-CoV2 pandemic has highlighted the importance of efficient and effective methods for identification of therapeutic drugs, and in particular has laid bare the need for methods that allow exploration of the full diversity of synthesizable small molecules. While classical high-throughput screening methods may consider up to millions of molecules, virtual screening methods hold the promise of enabling appraisal of billions of candidate molecules, thus expanding the search space while concurrently reducing costs and speeding discovery. Here, we describe a new screening pipeline, called , that is capable of rapidly exploring drug candidates from a library of billions of molecules, and is designed to support distributed computation on cluster and cloud resources.

View Article and Find Full Text PDF