Cardiac implantable electronic devices (CIEDs) generate substantial data, often stored in image or PDF formats. Remote monitoring, now an integral component of patient care, places considerable administrative burdens on clinicians and staff, in large part due to the challenge of integrating these data seamlessly into electronic health records. Since 2006, the Heart Rhythm Society, in collaboration with the CIED industry, has led an initiative to establish a unified standard nomenclature.
View Article and Find Full Text PDFNonsense-Mediated mRNA Decay (NMD) is a key control mechanism of RNA quality widely described to target mRNA harbouring Premature Termination Codon (PTC). However, recent studies suggested the existence of non-canonical pathways which remain unresolved. One of these alternative pathways suggested that specific mRNA could be targeted through their 3' UTR (Untranslated Region), which contain various elements involved in mRNA stability regulation.
View Article and Find Full Text PDFIntroduction: The reverse sural flap (RSF) is a random-type, pedicled flap based on sural artery perforators indicated for traumatic lower-extremity wounds. The RSF has demonstrated comparable results to free flap placement in the adult population for reconstruction of distal third defects, but few reports describe its application and outcomes in the pediatric population.
Methods: We investigated RSF application in pediatric patients (<18 years of age) through systematic review and meta-analysis.
Background: Catheter ablation for atrial fibrillation in patients with heart failure with reduced ejection fraction is associated with a significant reduction in morbimortality. The convergent procedure is a valid ablation option for the treatment of long-standing persistent atrial fibrillation.
Aim: To describe the outcomes of patients with heart failure with reduced ejection fraction and long-standing persistent atrial fibrillation who underwent the convergent procedure.
Multicolor MAGIC Markers strategies are useful lineage tracing tools to study brain development at a multicellular scale. In this chapter, we describe an in utero electroporation method to simultaneously label multiple neighboring progenitors and their respective progeny using these multicolor reporters. In utero electroporation enables the introduction of any gene of interest into embryonic neural progenitors lining the brain ventricles through a simple pipeline consisting of a micro-injection followed by the application of electrical pulses.
View Article and Find Full Text PDF