Publications by authors named "J F Dong"

Bacterial colonisation in hypertrophic scars (HSs) has been reported, yet the precise mechanism of their contribution to scar formation remains elusive. To address this, we examined HS and normal skin (NS) tissues through Gram staining and immunofluorescence. We co-cultured fibroblasts with heat-inactivated Staphylococcus aureus (S.

View Article and Find Full Text PDF

In the ecosystem, wood-inhabiting fungi play an indispensable role in wood degradation and the cycle of substances. They are regarded as the "key player" in the process of wood decomposition because of their ability to produce various enzymes that break down woody lignin, cellulose, and hemicellulose. In this study, four new wood-inhabiting fungal species, , , , and , were collected from southwestern China and were proposed based on the morphological and molecular evidence.

View Article and Find Full Text PDF

The presence of trace CO impurity gas in hydrogen fuel can rapidly deactivate platinum-based hydrogen oxidation reaction (HOR) catalysts due to poisoning effects, yet the precise CO tolerance mechanism remains debated. Our designed Au@PtX bifunctional core-shell nanocatalysts exhibit excellent performance of CO tolerance in acidic solution during HOR and possess exceptional Raman spectroscopy enhancement. Through capturing and analyzing in situ Raman spectroscopy evidences on *OH, metal-O species and *CO evolution under 0.

View Article and Find Full Text PDF

Constructing a built-in electric field (BIEF) within heterostructures has emerged as a compelling strategy for advancing electrocatalytic oxygen evolution reaction (OER) performance. Herein, the p-n type nanosheet array heterojunction NiP-NCDs-Co(OH)-NF are successfully prepared. The variation in interaction affinity between nitrogen within N-doped carbon dots (NCDs) and Ni/Co induces charge redistribution between Co and Ni in the NiP-NCDs-Co(OH)-NF-3 heterostructure, thereby enhancing the intensity of the BIEF, facilitating electron transfer, and markedly improving OER activity.

View Article and Find Full Text PDF

The synthesis of polymers with well-defined composition, architecture, and functionality has long been a focal area of research in the field of polymer chemistry. The advancement of controlled radical polymerization (CRP) has facilitated the synthesis of precise polymers, which are endowed with new properties and functionalities, thereby exhibiting a wide range of applications. However, radical polymerization faces several challenges, such as oxygen intolerance, and common thermal initiation methods may lead to side reactions and depolymerization.

View Article and Find Full Text PDF