Publications by authors named "J F Brunner"

Pregnant people are ubiquitously exposed to endocrine-disrupting phthalates through consumer products and food. The placenta may be particularly vulnerable to the adverse effects of phthalates, with evidence from animal models suggesting impacts on placental development and vascularization. We translate this research to humans, examining gestational exposure to phthalates and phthalate replacements in relation to novel markers of chorionic plate surface vascularization.

View Article and Find Full Text PDF

Background: Cardiovascular (CV) disease is the leading cause of death among U.S. women, yet women have a limited understanding of their CV-related morbidity and mortality risks.

View Article and Find Full Text PDF

Mutations in the microtubule-binding motor protein kinesin 5 A (KIF5A) are implicated in several adult-onset motor neuron diseases, including Amyotrophic Lateral Sclerosis, Spastic Paraplegia Type 10 and Charcot-Marie-Tooth Disease Type 2. While KIF5 family members transport a variety of cargos along axons, the specific cargos affected by KIF5A mutations remain poorly understood. Here, we generated KIF5Anull mutant human motor neurons and analyzed the impact on axonal transport and motor neuron outgrowth and regeneration in vitro.

View Article and Find Full Text PDF

Biopanning methods to select target-specific Nanobodies® (Nbs) involve presenting the antigen, immobilized on plastic plates or magnetic beads, to Nb libraries displayed on phage. Most routines are operator-dependent, labor-intensive and often material- and time-consuming. Here we validate an improved panning strategy that uses biosensors to present the antigen to phage-displayed Nbs in a well.

View Article and Find Full Text PDF

Active conductances tune the kinetics of axonal action potentials (APs) to support specialized functions of neuron types. However, the temporal characteristics of voltage signals strongly depend on the size of neuronal structures, as capacitive and resistive effects slow down voltage discharges in the membranes of small elements. Axonal action potentials are particularly sensitive to these inherent biophysical effects because of the large diameter variabilities within individual axons, potentially implying bouton size-dependent synaptic effects.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionqrr6l95d431epb28pfmlqsetcp2d6obf): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once