Publications by authors named "J Enkovaara"

Article Synopsis
  • GPAW is a powerful, open-source Python program for studying how electrons behave in materials using a method called density functional theory (DFT).
  • It can use different ways to represent these electron states, making it very flexible compared to other similar programs.
  • GPAW can also do advanced calculations for things like excited states, magnetic properties, and has recently added support to work faster with special computer hardware called GPUs.
View Article and Find Full Text PDF

Gold nanoclusters protected by a thiolate monolayer (MPC) are widely studied for their potential applications in site-specific bioconjugate labeling, sensing, drug delivery, and molecular electronics. Several MPCs with 1-2 nm metal cores are currently known to have a well-defined molecular structure, and they serve as an important link between molecularly dispersed gold and colloidal gold to understand the size-dependent electronic and optical properties. Here, we show by using an ab initio method together with atomistic models for experimentally observed thiolate-stabilized gold clusters how collective electronic excitations change when the gold core of the MPC grows from 1.

View Article and Find Full Text PDF

Electronic structure calculations have become an indispensable tool in many areas of materials science and quantum chemistry. Even though the Kohn-Sham formulation of the density-functional theory (DFT) simplifies the many-body problem significantly, one is still confronted with several numerical challenges. In this article we present the projector augmented-wave (PAW) method as implemented in the GPAW program package (https://wiki.

View Article and Find Full Text PDF

We present the implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids. The two technically very different methods are compared in the linear-response regime where we found perfect agreement in the calculated photoabsorption spectra. We discuss the strengths and weaknesses of the two methods as well as their convergence properties.

View Article and Find Full Text PDF

We propose two novel approaches to study the temperature dependence of the magnetization and the spin polarization at the Fermi level in magnetic compounds, and apply them to half-metallic ferromagnets. We reveal a new mechanism, where the hybridization of states forming the half-metallic gap depends on thermal spin fluctuations and the polarization can drop abruptly at temperatures much lower than the Curie point. We verify this for NiMnSb by ab initio calculations.

View Article and Find Full Text PDF